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Abstract-Analytical solutions are obtained for fully developed vertical laminar mixed convection flows 
within annular and conventional rod bundle subchannel geometries. Friction factors and Nusselt numbers 
are presented and fitted as functions of Gr,/Re. A modified friction factor is defined to be used in 
applications where only bulk-averaged fluid temperatures are available, as in the case of lumped parameter 
analyses and most one-dimensional experiments. It is shown that the modified friction factor can vary 
significantly from the standard definition, which highlights the necessity of using the modified friction 
factor in analyses where the bulk density is used to calculate the gravity component of the axial pressure 

gradient. Finally, the present analysis is compared with experimental data available in the literature. 

1. INTRODUCTION 

MIXED convection (also referred to as combined free 
and forced convection) in vertical channels occurs 
in fluid systems when the externally imposed axial 
pressure gradient is sufficiently low to make local 
buoyancy effects nonnegligible. These flows can be 
encountered in many types of heat exchange equip- 
ment where the potential exists for a high power-to- 
flow ratio, including nuclear reactors, heat exchan- 
gers, and passive solar systems. 

A number of workers have determined the laminar 
fully developed velocity profile of mixed convection 
flow in a vertical circular tube [l-5]. Hallman [6] 
obtained extensive heat transfer data for water in a 
heated vertical tube for both upflow and downtlow in 
the developing and fully developed regimes. Kemeny 
and Somers [7] also obtained heat transfer data in a 
heated vertical tube using water and oil as the test 
fluids. In addition, they obtained pressure drop data 
which indicated that as the power-to-flow ratio 
increased, the frictional loss increased. They ac- 
counted for this increase by defining a mixed con- 
vection friction factor ratio, f/f,, which increased 
with Gr,/Re. The ratio f/f, represents the ratio of 
mixed convection to forced convection friction fac- 
tors taken at the same Reynolds number. Bishop et 
al. [8] obtained an analytical expression for f/f, for 
fully developed laminar mixed convection flow in a 
circular tube for heated upflow. Heated downflow, 
however, was not included. 

‘l’ Current address : Creare, Inc., Etna Road, Hanover, NH 
03755, U.S.A. 

$ Current address : Fauske and Associates, Inc., 16WO70 
West 83rd Street, Burr Ridge, IL 60521, U.S.A. 

Sherwin [9] has similarly presented an analysis of 

fully developed laminar mixed convection flow 
through an annular duct with its inner radius heated. 

Velocity profiles, temperature profiles, and Nusselt 
numbers were presented for an outer radius to inner 
radius ratio of three. The limiting Nusselt number 
obtained as Gr,/Re approached zero was consistent 
with the forced convection result of Lundberg et al. 

[lo] for this radius ratio. Sherwin also obtained heat 
transfer data for downflow [9] in the heated annulus 
which, however, did not match the trends of the analy- 
sis due to buoyancy-induced turbulence. Maitra and 
Raju [l l] extended Sherwin’s analysis to higher 
Gr,/Re, although the validity of their analytical result 
is questionable since, for the range investigated, flow 
reversal in some regions of the channel is predicted 
which violates the assumptions of the original analy- 
sis. They do, however, present data for heated upflow 
through an annular channel, and the data do follow 
the analysis trend of an increase in the Nusselt number 
as heating is increased. An analytical prediction of the 
friction factor ratio was not made. 

Several workers have investigated the buoyancy 
effects on fully developed laminar flow through infi- 
nite rod bundle geometries [12-151. Kim and Wolf 
[ 161 predicted mixed convection subchannel friction 
factors and Nusselt numbers for finite rod bundles 
with heated upflow. Wang et al. [17] investigated the 
buoyancy effect on subchannel friction factors and 
Nusselt numbers for finite rod arrays of triangular 
and square shape for both heated upflow and heated 
downflow. The mixed convection friction factors pre- 
sented, though, were not computed directly from the 
calculated velocity profile, but rather from a quantity 
that is dependent on the choice of reference tem- 
perature (or density) in the channel. Efthimiadis and 
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NOMENCLATURE 

4 cross-sectional flow area r<> 
ber, [, bei, 5 J,(iJJ’<) = I&“‘<) 

= her,> 5 -t- ibei, r y,, 
bei: < d(bei, t)/dt R 

be& 5 d(ber, [)/dt R4, 

c,) coolant specific heat at constant Re 

pressure R, 
D rod outside diameter R0 
D, equivalent hydraulic diameter R, 

.f Darcy-Weisbach friction factor S 
F modification parameter for friction 

factor, + (2GrJRe)TJf Re t 

9 gravitational acceleration T 

Gr, Grashof number, p,‘figD,*q”/k/l’ 

Gr,., (DiD,)4Gry u 

GZ Graetz number, Re Pr/(z/D._) u 

N wire wrap lead length 
i J - 1 lW,D 

I,, modified Bessel function of first kind of z 
order 0 Z 

J, Bessel function of first kind of order 0 

outer radius or distance to zero shear 
stress plane 
duct wall distance 
dimensionless radial coordinate, r/De 

Rayleigh number, (Gr,,‘Re)/4 

Reynolds number, p,u,, D,;p 

r,iD, 

r,, ! D, 

r,lD, 
denominator in the angle of symmetry. 
X/S 
temperature 
dimensionless temperature, 
(t- t,)k/4”De 

axial velocity 
dimensionless axial velocity, u/u, 
gap distance 
gap to diameter ratio 
axial coordinate 
dimensionless axial coordinate, z/O,. 

k thermal conductivity 

K0 modified Bessel function of second kind 
of order 0 

ker, t, kei, [ Y,(i”‘[) = K,(i”‘[) 
= ker, 5 + ikei, 4 

ti mass flow rate 
n outward normal 
N dimensionless outward normal, n/D, 

NU Nusselt number, [T/(i;, - Q](D,/k) 

P pressure 
[ - dp/dz] pressure gradient 

d p+p09z 
P dimensionless pressure, j/p,uz 

Ph heated perimeter 

p, wetted perimeter 
Pr Prandtl number, c&k 

PID pitch to diameter ratio 

4 heat input rate 

: 

average heat flux, q/P, L 

dimensionless heat flux, 
-/&t/q = q”/q” 

r radial coordinate 

r, inner radius 

Greek symbols 
a inner-to-outer radius ratio of annulus, 

6 /r, 
B thermal expansion coefficient, 

(f/P)(--aplaT), 
rl (4(Gr,lRe)(PJP,)) ‘U 

p dynamic viscosity 

4 colatitudinal (or ‘cone’) angle 

P fluid density 
fI azimuthal (or ‘polar’) angle 

r* wall shear stress 

5 variable. 

Subscripts 

f” 

bulk averaged 
frictional 

FC forced convection (equation (39)) 
i inner 
MC mixed convection (equation (39)) 
0 equivalent isothermal, reference, outer 

or zeroth order 
W wall. 

Todreas [ 181 obtained mixed convection pressure 
drop and heat transfer data from bare and wire- 
wrapped bundles with P/D ratio equal to 1.25. The 
Nusselt numbers measured for the wire-wrapped 
bundle matched Wang et al’s analysis [17] for the 
range of Gr,lRe values considered. 

This review of the literature for fully developed 
laminar mixed convection flow illustrates that while 
the circular tube has been extensively studied, other 
geometries of interest have not. For example, Nusselt 

number results exist only for the inner radius heated 
annulus [9], and for heated upflow and heated down- 
flow in subchannels of finite triangular and square 
arrays [ 171. 

An additional problem arises in the evaluation ot 
the gravity term of the momentum equation. In order 
to properly evaluate this term, the spatially-averaged 

fluid density must be known. Typically, however, the 
bulk-averaged (mixing-cup) fluid properties are 
measured in experiments and calculated by lumped 
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parameter analysis codes. For mixed convection flows, 
the bulk-averaged and spatially-averaged densities 
may significantly differ, and thus there is an inherent 
error introduced by using the bulk density to compute 
the gravity pressure gradient. Alternatively, this error 
can be eliminated by including a separate correction 
term in the momentum equation to account for this 
difference. Instead of correcting both the friction and 
gravity pressure gradient terms for mixed convection 
effects, the gravity correction term is included in the 
friction term. In doing so, a modified friction factor 
is defined which includes the gravity pressure gradient 
correction term. This modified friction factor can then 
be used in combination with the bulk density to cal- 
culate the total (gravity plus friction) pressure gradi- 
ent in a channel without error. 

sinesq approximation, variations of the density will 
also be ignored except for the gravity body force term 
of the momentum equation where the density is 
assumed to be of the form 

P = POD -Rt--CA (1) 

The determination of the reference temperature t,, and 
reference density p,, is presented later. 

From the previous assumptions, the momentum 
and energy conservation equations are 

0 = - $ T p,g[l-~(t-tt,)]+/.LV2U (2) 

@a) 

This work was performed to obtain standard and 
modified friction factor and Nusselt number results 
under fully developed laminar mixed convection con- 
ditions for a variety of azimuthally symmetric and 
subchannel geometries under aiding and opposing 
flow conditions for which solutions do not presently 
exist. In providing these results, general solutions to 
the conservation equations are obtained in non- 
dimensional form. These can then be used to obtain 
solutions for other geometries not considered here 
as the need arises. The Nusselt number results are 
compared with applicable experimental data. 

where z increases in the direction of flow. In equation 
(2), the minus sign on the second term on the right- 
hand side applies to flows in which the buoyancy force 
is in the same direction as the bulk flow (heated upflow 
or cooled downflow), a situation called ‘aiding flow’. 
The plus sign applies to flows in which the buoyancy 
is in the opposite direction to the flow (heated down- 
flow or cooled upflow), a situation called ‘opposing 
flow’. 

The tabular and graphical results for all geometries 
investigated in this work are available in ref. [26]. 

2. GENERAL NON-DIMENSIONAL SOLUTION 

OF THE CONSERVATION EQUATIONS 

Now we neglect the axial mass flux gradient, 
a(pu)/az, by applying the Boussinesq approximation 
and the fully developed flow condition, and approxi- 
mate the mass flow rate as riz z p,,u,,Ar by neglecting 
the spatially-averaged product of spatial variations 
in density and velocity. Then the axial temperature 
gradient, &/CJz, can be related to the duct wall heat 
flux through an energy balance as 

2. I. Velocity projile 
It is desired to solve for the fully developed laminar 

velocity and temperature distributions for fluid flow- 
ing in vertical heated ducts in the mixed convection 
regime with no internal heat generation and no sec- 
ondary flows (i.e. no 8 and r components of velocity). 
The fluid is heated with a uniform axial heat flux 
prescribed on one surface of the duct, and the heat 
flux may vary azimuthally. 

at #‘Ph 
-p 

which is substituted into equation (3a), the result 
being 

q” 2 ; = kV2t, 

f 0 

(3b) 

In the present analysis only the axial velocity dis- 
tributions are considered in the r- and O-directions. 
While the radial and azimuthal velocities might still 
exist within the channel due to the azimuthally varying 
heat flux boundary condition, these secondary flows 
are neglected since : 

Equations (2) and (3b) can now be nondimen- 
sionalized as 

dP Gr 
0 = --Re+AT+V2U 

dZ - Re (4) 

(1) the time scale of the secondary flow motion is 
typically much greater than that of the bulk axial flow 
so that it should have negligible effect on the axial 
flow profile ; 

Ph 
4-u = V*2T 

P, 
(9 

(2) their neglect leads to conservative upper limit 
values for both the friction factor and the Nusselt 
number. 

By applying the non-dimensional Laplacian oper- 
ator V*’ to equation (4), and utilizing equation (5), 
T can be eliminated, the result being 

Gr P,, 
0 = +4-3 - u+v*4iJ 

- Re P, 

To simplify the analysis, it will be assumed that the since (dP/dZ) Re is a constant term and is eliminated 
fluid specific heat, viscosity, and thermal conductivity in this process. The general solution (in polar coor- 
do not vary with temperature. Following the Bous- dinates) to equation (6) can be written as 
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U = 2 {[a, ber, (r~R)+b, bei, (r~R)+c,, ker, (vi?) 
v-0 

+ d, kei, (VR)] [e cos (~0) + .f sin (@I} (7) 

for aiding flow, and 

+d&(~R)l[ecos (~0) +f sin (vO)l} (8) 

for opposing flow, where the parameter q is defined 

by 

(9) 

For geometries with azimuthal symmetry, equa- 
tions (7) and (8) reduce to 

U = a, ber, (?R) +b, bei, (vR) + c, ker, (r@) 

+& kei, (vR) (10) 

for aiding flow, and 

U= a,J,(?R)+b”Y,(r?R)+c,l,(rlR)+d”K,(~R) 

(11) 

for opposing flow. 
For triangular and square arrays, the boundaries 

0 = 0 and n/s are lines of symmetry where s = 6 and 
4, respectively. Therefore 

Applying equation (12) to equations (7) and (8) yields 
f’ = 0 and specifies possible values of v as 

v=ns, n=0,1,2 ,... (13) 

so that equations (7) and (8) can be written as 

u = 1 {[a,., berm, (WV +b,, bei,, (?R) 
,z= 0 

+c,, ker,,, (rlR) +L kei,,, (rlR)l]cos W)l} (14) 

for aiding flow, and 

+c,,l,,(rlR)+d,,K,,(yR)l[cos(nsfl)l~ (15) 

for opposing flow. The constant e has been incor- 
porated into the constants a,,,, b,,$, c,,, and d,,. 

The general solutions for both the azimuthal sym- 
metric geometry and the rod array cases have four 
sets of constants. These sets of constants are evaluated 
from the velocity and heat flux boundary conditions. 
The heat flux at the boundaries is next shown to be 
a function of Ve3U. First, a dimensionless heat flux is 
defined by 

-FT. (16) 

After applying the V* operator to equation (4) and 
rearranging, one obtains 

ve3u 
+ ~..-~_ = _V*T, 

Gr,l Re 

Combining equations (16) and (17) yields 

(17) 

Equation (18) can be used to relate the heat flux 
boundary conditions to V* 3 U. 

2.2. Friction factor calculation 

In the last section it was shown that for fully 
developed conditions the mixed convection velocity 
profile in the duct is a function of Gr,/Re, boundary 
conditions, and geometry. Since the friction factor is 
directly related to the shear at the fluid-solid interface 
which results from a velocity gradient normal to the 
surface, one would expect mixed convection effects to 
alter the friction factor from the forced convection 
value. In this section it will be shown how the friction 
factor is calculated once the velocity profile is known. 

A simple force balance shows that 

where [ - dp/dz], is the pressure gradient due to skin 
friction, and r, is the fluid shear at the duct wall. For 
a Newtonian fluid 

where the normal derivative is defined by 

and 4 is the angle between the surface normal and the 
Q-direction. (For a radial surface. 4 = 0.) After some 
algebraic manipulation, and introducing the Darcy 

friction factor. i.e. 

one can solve for f Re, as 

(22) 

(23) 

where the non-dimensional normal derivative is 
defined by 

a E 1 a 
_z 

i?N 
cos+,, -sin$R a~. (24) 

For mixed convection flow, we have defined a mixed 
convection friction factor ratio. f‘/,f”, where ,I; is the 
forced convection friction factor for the same Reyn- 
olds number as for ,c For fully developed laminar 
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flow, f, Re is a constant, so that the friction factor 
ratio can be evaluated from 

fRe cf/fo> = mRe 

As GrJRe approaches zero, f/f0 approaches one. 

2.3. Temperature projle 
The expressions needed to calculate the mixed con- 

vection friction factor were calculated directly from 
the velocity profile. This is because frictional pressure 
drop is caused by fluid shear at the wall. Once the 
velocity profile in the channel is known, one can solve 
for the temperature field by solving equation (4) for 
T. The one problem is that the (- dP/dZ) Re in equa- 
tion (4) is still an undetermined constant. It will be 
shown that if the reference temperature is chosen to 
be the spatially-averaged temperature, the constant 
(-dP/dZ) Re can be related to the constant f Re 
already calculated from the velocity profile. 

First, -dP/dZ as defined is expanded to 

-g=$[-$&g]. (26) 

If p0 is assumed to be the spatially-averaged density 
in the cross-section of the duct, then pOg is the axial 
pressure gradient due to the gravity body force. The 
expression in square brackets in equation (26) must 
therefore represent the axial pressure gradient due to 
friction, [ - dp/dz], since 

[-:I= ++jg+[-$j,. (27) 

Equation (26) can therefore be written as 

(28) 

Combining equation (22) with equation (28), thereby 
eliminating [ - dp/dz],, results in 

dP -E&=F. 

Now that the constant [ - dP/dZ] Re is known, equa- 
tion (4) can be directly solved for T, resulting in 

T= r 

- gRe+P2U 

Gr,/Re ’ (30) 

Equation (29) is valid only if p0 is calculated at the 
spatially-averaged temperature defined as 

t, 2 ss 4 my 
tr dr d0. (31) 

If another reference density and temperature are 
chosen, equation (29) will give erroneous results. This 
was the source of error in ref. [17], where an arbitrary 
reference temperature was chosen. 

The bulk-averaged temperature for axial flow is 
defined as, with liz taken as pou,,Af 

tb r1 ss ~ouo4 or 
putr dr d0 (32a) 

which can be simplified consistent with the Boussinesq 
approximation of neglecting density variations except 
for the buoyancy term in the momentum equation to 

1 
tb = a 

is 

utr drde (32b) 
D f A, 

since p0 >> p--pO. 
Substituting U, T and R for u, t and r, respectively, 

results in 

0,’ 
Tb = A UTR dR de. (32~) 

f 

Once U and T are known, equation (32~) can be 
integrated numerically. It will be shown that Tb is a 
necessary parameter for the calculation of the modi- 
fied friction factor of the next section. 

2.4. ModiJied friction factor 
To calculate the axial pressure gradient, it is neces- 

sary to evaluate the correct pressure gradient due to 
gravity. Typically, the gravity pressure gradient is cal- 
culated assuming the bulk-averaged temperature and 
density are equal to the spatially-averaged tem- 
perature and density, since the bulk temperature can 
be calculated from lumped parameter analysis without 
knowledge of the details of the temperature field. As 
Gr,/Re increases, the error associated with this 
approximation also increases. 

Specifically, the pressure gradient should be cal- 
culated using the spatially-averaged density in equa- 
tion (27) 

[-g-j= ~P.,+[-~], (33) 

whereas it is usually approximated using 
density, i.e. 

the bulk 

[-$I= ,,,+[-21, (34) 

Therefore, we seek an easy way to correct for using 
the bulk density to compute the gravity term in the 
momentum equation, i.e. to correct the right-hand 
side of equation (34) to eliminate the approximation. 
Bather than correcting the gravity term, however, we 
chose to correct the friction term since the designer 
will know only the bulk density through his lumped 
parameter tools, and the correction factor can be read- 
ily calculated from previously determined non-dimen- 
sional parameters. This leads to the formulation of 
the correction factor F such that 
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[-$j= iP~$J+(-+$l+F). (35) 

Since equation (33) can be expanded as 

dp [--I dz = *Pbg+(P”-Ph)g+ (36) 
I 

we see that the factor F is given by 

(37) 

As can be seen from equation (37), the factor F rep- 
resents the ratio of the gravity pressure gradient cor- 
rection to the friction pressure drop, and equals zero 
for forced convection flows. Substituting equations 

(1) and (22) into equation (37), the desired expression 
for F is obtained as 

Thus, Fcan easily be calculated from previously deter- 
mined non-dimensional parameters. 

Hence, the ratio of the mixed to forced convection 
friction pressure drop which should be used when the 
axial pressure gradient due to gravity is calculated 
using the bulk density (as is typically done in lumped 
parameter codes) is 

f&(l+F) 
MC[-dpidzlf = !?+_ = ; (1 +F), 

Fc [ - WW, 
(39) 

.D % 0 
D, 2 

2.5. Nusselt number 
Once the temperature distribution is known, the 

Nusselt number can easily be calculated. By definition 

where f, is the average temperature 
surface, which can be calculated from 

trdO. 

(40) 

of the heated 

(41) 

Equations (40) and (41) can then be nondimen- 
sionalized to yield 

and 

TRdO. 

In geometries where more than one wall is heated, one 

can use equations (42) and (43) to define a different 
Nusselt number for each wall. It must be noted, how- 
ever, that in situations where more than one wall is 
heated. the Nusselt number obtained for each heated 
surface will also depend upon the heat fluxes on the 
other surfaces through T,,. This phenomenon is not 
unique to mixed convection but occurs also in forced 
convection. 

Now that the generalized conservation equations 
have been presented, one can proceed to solve the 
equations for two sets of geometries. For the first set, 
azimuthal symmetry is assumed, thereby simplifying 
the analysis. The second geometry set involves sub- 
channels occurring in rod bundle geometries where 

azimuthal dependencies cannot be ignored. 

3. GEOMETRIES WITH AZIMUTHAL 

SYMMETRY 

3.1 Velocity projle 
Four geometries are investigated in this section. For 

each geometry, aiding and opposing flow conditions 
are evaluated. For the first geometry, the duct is 
assumed to be concentrically annular in shape. The 
heat flux is imposed at the inner radius and an adia- 
batic outer radius is assumed. For the second 
geometry, the duct is annular with an adiabatic inner 
radius and heat flux imposed at the outer radius. The 
third geometry is the circular duct. with the heat flux 
imposed at the wall. The fourth geometry is called the 
equivalent annulus because. like the annulus, it has an 
inner and outer radius. The dilference is that instead of 
a no-slip velocity boundary condition being imposed 
at the outer radius, a zero shear condition is assumed 

for the equivalent annulus. The equivalent annulus is 
of interest because it can be used as an approximation 
to rod array geometries with large spacing, as will 
be discussed later. For each case, the parameter r is 
defined as the inner radius to outer radius ratio (CL = 0 
for the circular channel). The solutions for the velocity 
profiles are obtained by computing N,,, h,, C, and d,, 
from the velocity and heat flux boundary conditions 
at the inner and outer radii. 

Figure 1 shows the aiding How velocity profile for a 
typical azimuthally symmetric geometry (inner radius 
heated annulus). The effect of increasing GrJRe for 
aiding flow is to redistribute the flow towards the 
heated wall. Mass continuity requires a corresponding 
decrease of flow near the adiabatic boundary. For 
opposing flow, the effect is to redistribute the flow 
away from the heated wall [26]. There is a corres- 
ponding increase of flow near the adiabatic boundary. 

3.2. Friction ,fhctor 
In the previous section it was shown that the veloc- 

ity profile in a duct will be distorted as GrJRe in- 
creases. As the velocity profile changes, the fluid 
shear at the no-slip surfaces must also change, since 
shear is proportional to the velocity gradient. For 
aiding flow, the shear will increase at the heated wall 
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FIG. 1. Velocity profile for the inner radius heated annulus 
for aiding flow. 

and due to mass conservation, decrease at the adia- 

batic boundary. For opposing Bow, the reverse will 
occur. These effects cause the friction factor to vary 
with Gr,jRe. 

The friction factor can be evaluated using the pre- 
viously derived equations (23) and (24). For geome- 
tries with azimuthal symmetry, the surface normal 
must always be radial so that # = 0. Equations (23) 
and (24) can therefore be combined as 

w 

The parameter f. Re can be evaluated from the stan- 
dard results 

c 64 

64jl -a*w -a)* 
1 _a4 (1 -a212 

annulus 

inn’ 
c( 

64 
(1 -a2)3 equivalent 

Lx* -3+4a’-a’f4lni 
> 

annulus 

(45) 

which can be obtained by solving equation (4) with 
GrJRe = 0, applying the appropriate velocity bound- 
ary conditions, and substituting the expression for U 
into equation (44). The friction factor ratio can then 
be evaluated from equation (25). 

The parameter f /f. is plotted against Gr,/Re in Fig. 
2 for the inner radius heated annulus. For large a 
values as the value of Gr,/Re increases, the velocity 
distortion increases, producing increased friction fac- 
tors for aiding flow. For small a the decrease in shear 
at the adiabatic boundary more than compensates for 

3*5* 
-Standard f/f0 

3*0m---Ebdified (f/f~~(~+F) 
If 

";/I 

0 'Z 2.5- o.c$'/ 

is 

0.1 

0.5. I L 

102 103 lo4 
Grashof to Reynolds Number, Grq/Re 

FIG. 2. Standard and modified friction factor ratios for the 
inner radius heated annulus for aiding flow. 

the increase at the heated surface. As a result, the f if, 
ratio decreases with increasing GrJRe for a = 0.1. 
Corresponding calculations for opposing flow dem- 
onstrated a decrease in friction factors with increasing 
Gr,,lRe for a = 0.9 and 0.5 and the inverse behavior 
for a = 0.1 [26]. 

The friction factor ratio results are fitted to the form 

ln(.f/_L) = i 9J’ (46) 
i=O 

where 

,I aa In(l+Gr,/Re). (47) 

The results are presented in Tables 3-2 through 3-7 of 
ref, [26J. The values of gi are obtained by least squares 
error fitting, and less than 5% fitting error results 
when Gr,/Re is within the range listed in the table. 

3.3. Mod$ed friction factor 
We can use equations (29) and (30) to solve for the 

tempe~tu~ field in the duct once we have obtained 
an expression for S Re. Then, equation (32) can be 
used to find the dimensionless bulk temperature, Tb. 
For geometries with azimuthal symmetry, equation 
(32~) simplifies to 

Lf2 % 
Tb = 2x2 

s A, R, 
UTR dR (48) 

which can be integrated numerically. Once Tb is 
obtained, equation (38) is used to solve for F. 

Figure 2 shows how the modified friction factor 
differs from the standard friction factor for the inner 
radius heated annulus. Corres~nding ca~c~ations 
for opposing flow demonstrated a more pronounced 
difference since the standard friction factor decreased 
with Gr,/Re, while the modified friction factor 
increased with Gr,,/Re for a = 0.9 and 0.5 [26]. 

The above modified friction factor ratio results are 
fitted to the form 
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lid 

Qashof to Reynolds Number, GrqiRe 

FIG. 3. Mixed convection Nusselt number for the inner radius 
heated annulus for aiding flow. 

4 

In [(f‘/.fn)( 1 + F)] = )J yJ” (49) 
i _ 0 

as was done for the standard friction factor ratio. The 
resulting values for gi are listed in Tables 3-8 through 
3- 13 of ref. @6]. 

3.4. Nusselt number 
The determination of the Nusselt number is trivial 

once the temperature field is known. The Nusselt num- 
ber is given directly by equation (42). 

Figure 3 shows the Nusselt number vs G’r,/Re for 

the inner radius heated annulus. The Nusselt number 
increases for aiding flow due to increased convection 
at the diabatic (i.e. heat transfer) wall. and it decreases 
for opposing flow due to decreased convection at the 
diabatic wall. 

The Nusselt number results are also fitted to the 
form 

In (Nu) = i gJ’ 
1-O 

(50) 

as was done for the friction factor ratios. The values 
ofg, are presented in Tables 3-14 through 3-17 of ref. 
[26] for the inner radius heated and the outer radius 
heated annuli, but not for the equivalent annuli which 
exhibit fairly constant values of the Nusselt number 
for given n ratios for Gr,jRe < 104. 

Lundberg et at. [lo] have solved for the heat transfer 
in annular geometries for forced convection, hydro- 
dynamically developed, thermally developing flow. 
Table 1 compares their results for thermally developed 
flow with the results from the present mixed con- 
vection analysis, which were obtained by setting 
Gr,jRe = 0.1. We see excellent agreement with the 
forced convection analysis for all values of g reported. 

4. ROD BUNDLE GEOMETRIES 

4.1. Introduction 
The choice of bundle cells is made such that zero 

shear stress and adiabatic boundary conditions can 

Table I. Forced convection Nusselt numbers for the annulus 

Heating 
a location Aiding 

0.02 rl 32.704 
r,, 4.134 

0.05 rl 17.X1 I 
r,, 4.792 

0.10 r’ I 1.906 
‘; 4.834 

0.25 r, 7.754 
r<, 4.905 

0.50 I‘1 6.184 
r, 5.037 

Forced convection 
opposillg analysis [IO] 

32.701! 32.70 
4.734 4.734 

17.Xll 17.x1 
4.791 4.791 

1 I .906 11.90 

4,X% 4.X34 

7.753 7.753 
4.904 4.904 

6.181 6.lXL 
5.036 5.03h 

be applied at inter-cell boundaries. The symmetric 
segments for a triangular array are shown in Fig. 4. 

A problem arises, though, for the edge symmetric 
segments, since as illustrated in Fig. 4 these are not 
the geometries conventionally chosen for the noding 
scheme in the codes such as ENERGY-IV [25] and 
COBRA. To obtain the friction factors and Nusselt 

numbers for these subchannel geometries, the sym- 
metric edge segments are broken into three segments 
with 0 < ff < n/2, n/2 < 0 < SK/~, and 5n/6 < 0 < n, 
respectively, for the t~angular array, and into two 
segments with 0 < 0 < R/Z? and n/2 < 0 < rr. respec- 
tively, for the square array. The segments with 

0 < 0 < 7r/2 corresponds exactly to the conventional 
edge subchannel geometry. 

In the interest of brevity, only the friction factor 
and Nusselt number results for the conventional tri- 
angular interior subchannel are presented in this 
paper for P/D = 1.25 and 1.08 to simulate liquid 
metal reactor fuel and blanket assemblies. Reference 
[26] contains the results for other subchannels: tri- 
angular conventional edge, triangular symmetric 
edge, square interior, square conventional edge and 
square symmetric edge. 

The application of the mixed convection sub- 
channel friction factors is treated in our subsequent 
papers relative to reactor core flow redistribution and 
frictional loss. The difference in How splits is numed- 
tally small. However, the significant consequence of 
design importance is the bundle frictional pressure 
drop increase of as much as 85% of the corresponding 
forced convection value at the bundle Re = 470 and 
Gr,,/Re = 3500 under power skew condition, which 
highlights the importance of utilizing the mixed con- 
vection friction factors when the buoyancy plays a 
dominant role. 

Finally, the mathematically predicted flow reversal 
might not be physically observed due to the buoyaucy- 
induced premature transition to turbulence (in case 
of liquid) and the intersubchannel crossflow in rod 
bundles. The application of the proposed correlations 
should thus be limited to steady, laminar, fully 
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FIG. 4. Symmetric segment (--) and conventional &channel (-) geometries for the triangular rod array. 

developed, incompressible mixed convective flows 
with no recirculation. 

4.2. Two-region anaZysis 
An approach where the boundary conditions apply 

to only one domain (such as the coolant region) is 
called a one-region analysis. A more detailed 
approach would be to assume a ~ifo~ or azi- 
muthally varying heat fIux along the inner clad 
surface. For this approach all the fluid region bound- 
ary conditions are not explicitly prescribed. Instead, 
the clad and coolant region boundary conditions are 
matched at the clad-coolant region interface. This 
approach is called a two-region analysis. A package 
of computer programs, originally developed by Kim 
and Wolf [ 161, and later modified by Wang et al. [I 71, 
solves the two-region problem under the assumptions 
of steady state, thermally and hydrodynamically fully 
developed laminar flow with no heat generation in the 
coolant and clad regions. The one-region problem is 
actually a limiting case of the two-region problem 
and is obtained when the clad thermal conductivity is 
much lower than the fluid thermal conductivity so that 
the heat flux lines remain radial (and thus aximuthally 
uniform) throu~out the clad region. Since the two- 
region analysis code was available, it was decided to 
use it with a low clad-to-coolant thermal conductivity 
ratio, kclad/kffuid = 0.001, to simulate the one-region 
analysis with circumferentially uniform heat flux 
along the clad-coolant interface. 

The unknown coefficients in the general solutions 
for the non-dimensional coolant velocity and tem- 
perature, and for the clad temperature, are determined 
by using the boundary conditions along the zero shear 

cell boundaries, the clad outside surface, the clad 
inside surface and, for edge cells, the duct wall inner 
surface. The boundary conditions can be satisfied con- 
tinuously at the outside and inside clad surfaces. The 
imposed conditions along the poiygonal cell bound- 
aries and duct wall surface, however, are satisfied by 
a point-matching technique applied at a prescribed 
number of points. This leads to a set of linear equa- 
tions which can be solved by standard methods. 
Details of the two-region analysis can be found in ref. 

U71. 

4.3. Velocity bridle 
Equations (14) and (15) can be used to obtain the 

velocity profiles for the interior and edge cells in aiding 
and opposing flows, respectively. The four sets of 
coefficients : a,, b,, c, and d, are computed using 
the two-region analysis codes [ 17. 

Our subchannel results are presented vs a Grashof 
number based on the rod outside diameter, D, instead 
of the equivalent diameter, 4, noting that the PJLt 
ratio and the equivalent diameter are not independent 
of each other. The choice of the heated rod diameter 
as the characteristic length for the Grashof number 
reflects the existence of the the~aily-d~ven buoyancy 
effect in heated rod bundle geometries. For other 
geometries, such as our outer radius heated annulus, 
although the outside diameter could be used as the 
characteristic length, we chose to use D, to be con- 
sistent with the literature. The Reynolds number, how- 
ever, is always based on the equivalent diameter. The 
two Grashof numbers are related by 

De 4 Gr, = GT~,~ z . 0 
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FIG. 5. Velocity profile for the triangular interior subchannel. 

Figure 5 shows how increasing Gr,,/Re distorts the 
velocity profiles for a typical triangular array interior 
subchannel. At low GrJRe, the velocity profiles are 
parabolic and highly nonuniform over the regions 
within the cell. With increasing Gr,,/Re, we observe 
that fluid is redistributed within the cell towards the 
rod surface for aiding flows and away from it for 
opposing flows. Consequently, the flow becomes more 
uniform for aiding flows and more nonuniform for 
opposing flows. These local flow redistribution effects 
are more predominant in the square array than in the 
triangular array for the same P/D ratio [26]. 
Moreover, the local buoyancy effects are more pro- 
nounced for P/D = I .25 than for P/D = 1.08. 

4.4. Cell-average friction factor 
The friction factor is calculated here using equation 

(23), which can be rewritten for interior subchannels 
as 

where s = 6 for triangular arrays and s = 4 for square 
arrays. For interior subchannels, the wetted perimeter 
includes only the outer rod surface, while for edge cells 
both the rod surface and duct wall must be included. 

The f Re results for the limiting case of forced con- 
vection (Gr,,,/Re sz 0.5) are presented in Table 2 for 
the triangular array interior subchannels. As shown, 
the agreement is excellent. The aiding flow predictions 
are slightly higher than the opposing flow calcu- 
lations, which is in accord with the heat addition effect 
of slightly increasing the velocity gradient near the 
wall for aiding flow and decreasing it for opposing 
Bow. 

1.05 62.21 
1.08 14.21 
1.10 81.74 
1.15 92.35 
1.20 99.96 
1.25 105.27 
1.50 124.49 
1.80 144.14 
2.00 156.95 
3.00 232.10 

(52) 

fible 2. Forced convection J’ Re results for the triangular interior subchannel 
__-._ 

Sparrow and Present analysis 
Loeffler Axford Rehme Aiding Opposing 

PID PO1 P21 WI Standard Modified Standard Modified 

61.91 
- 

81.51 
92.56 
99.80 

105.20 
124.14 

157.54 
233.84 

62.32 62.90 62.90 62.82 
74.42 14.42 74.37 

83.24 81.74 81.74 81.52 
92.88 92.64 92.64 92.00 

100.80 99.83 99.83 99.48 
-. 105.22 105.22 105.02 

124.17 124.14 123.61 
143.88 144.22 144.00 143.88 
154.20 158.08 157.54 156.95 

244.58 232.70 220.00 

62.89 
74.39 
81.55 
92.04 
99.54 

105.17 
124.14 
143.97 

-__ 
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FIG. 6. Standard and modified friction factor ratios for the triangular interior subchannel. 

For edge cells, where a segment of interior sub- 
channels is included, the friction factor results are 
split up such that they can be directly applied to the 
conventional geometry of the edge subchannel. For 
the conventional edge subchannels in both triangular 
and square arrays, the friction factor is detied as 

I 

(53) 

where 6, = arctan (P/h), Rw = w/(D,cos 9), and 
a/aN at the duct wall is given by equation (24). 

Figure 6 shows the friction factors calculated for 
the triangular array interior subchannel. Tables 4-5 
and 4-6 of ref. [26] present the regression coefficients 
for the fitting equation (46) for standard friction fac- 
tors with 

I = In (1 f Gr,,/Re). (54) 

4.5. Mod$ed cell-average friction factor 
In order to compute the modified friction factor 

ratio, If/&)(1 +F), one needs to obtain the bulk tem- 
perature, Tb. Equation (32~) is used, where the area 
integrals are performed over the subchannel cross sec- 
tions. Tables 4-7 and 4-8 of ref. [26] list the regression 
coefficients for equation (49) with Iz given by equation 
(54) in triangular and square arrays. The results for 

Table 3. Forced convection Nusselt numbers for the tri- 
angular interior subchannel 

Dwyer 
Sparrow and 

et al. Berry Hsu Present analysis 
PiB WI r231 1241 Aiding Opposing 

1.05 - 1.06 1.06 1.03 1.07 
1.08 - - - I.95 1.97 
1.10 - 2.94 2.94 2.92 2.93 
1.15 - - 5.14 5.12 5.16 
1.20 - 6.90 6.90 6.89 6.90 
1.25 - - - 8.14 8.13 
1.50 - 11.22 11.23 11.23 11.22 
1.80 - 13.66 13.67 13.67 14.81 
2.00 15.3 15.26 - 15.27 - 
3.00 24.0 - - 24.12 23.98 

the typical geometry are also shown in Fig. 6. It is 
seen that there exist significant differences between the 
standard and modified friction factors. 

4.6. Cell-average Nusselt number 
As with geometries with azimuthal symmetry, the 

Nusselt number can easily be obtained once the tem- 
perature field in the cell is known. Nusselt numbers 
for the conventional edge subchannel as well as for 
the symmetric edge segment are reported in ref. [26]. 

Table 3 presents the limiting forced convection 

(Gr,,#e x 0.5) Nusselt numbers for the triangular 
array interior subchannel, which are in good agfee- 
ment with those in the literature. However, the results 
of Sparrow et al. [21] are for a uniform wall tem- 
perature boundary condition. For P/D 3 2, though, 
there is essentially no distinction between the cir- 
cumferentially uniform wall temperature and uniform 
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FL 7. Mixed convection Nusselt number for the triangular interior subchannel 

heat flux conditions. since the azimuthal variation of 
either quantity is small. The agreement for P/D = 2 

and 3 presents appropriate justification for this state- 
ment. 

Tables 4-10 and 4-I 1 of ref. [26] list the regression 
coefficients associated with equation (SO) for both 
triangular and square arrays with /I defined by equa- 
tion (54). The results for the triangular array interior 
subchannel are plotted in Fig. 7. In general, the Nus- 
selt number increases for aiding flow due to increased 
convection at the diabatic wall, and it decreases for 
opposing flow due to decreased convection at that 
location. 

4.7. Application of equiculent unnulus rrsults to the 

interior cell geometry> 

Sparrow and Loeffler [20] solved for the forced 
convection friction factors for axial flow in infinite 

triangular and square rod array geometries. These 
cases correspond to the interior cell geometries inves- 
tigated here. They found that as P/D is increased, the 
effect of neighboring rods is reduced. Normalizing the 
local shear stress around the rod by the average shear 
stress and plotting it vs the azimuthal angle 0, they 
found that, as the P/D ratio increased, the angular 
dependence of the shear stress decreased. Thus, a sub- 
channel geometry with large P/D ratios could be 
approximated by a geometry with azimuthal sym- 
metry. This is the basis for choosing the equivalent 
annulus to describe rod arrays with large P/D ratios. 
By equating the inner radius of the equivalent annulus 
model with the rod outer radius for the interior cell 
in the case of equal flow areas, one finds 

u = [;G;(;G)]II ‘/(P,D). (55) 

Table 4. Minimum P/D for equivalent annulus approxi- 
mation of the interior subchannels 

Case 

Aiding triangular array 
Aiding square array 
Opposing triangular array 
Opposing square array 

Minimum Maximum 
P:‘D error (O/o) 

1.50 3.15 
3.00 I .02 
3 .oo 1.37 

t 

t Not recommended. 

Since the equivalent annulus friction factor cal- 
culation is easier to perform than that for the interior 
cell, it is desirable to find the range of its applicability. 
A comparison, from which Table 4 was constructed, 
was made between the equivalent annulus and the 
interior cell results, and it illustrates, for the cases 
considered, the minimum P/D ratios at which the 
equivalent annulus formulation accurately predicts 
the interior cell friction factor ratio. It can be seen 
that the equivalent annulus approximation can be 
used down to a lower P/D ratio for triangular arrays 
than for square arrays. The equivalent annulus also 
approximates aiding flow more closely than opposing 
flow. For opposing flow in a square array, it is not 
recommended for any P/D ratio. 

5. COMPARISON OF THEORY WITH 

EXPERIMENTAL DATA 

5.1. Friction jactor 

There is a scarcity of mixed convection pressure 
drop data in the literature as is summarized in the 
Introduction. Kemeny and Somers [7] measured 
mixed convection pressure drop for aiding flow in 
circular tubes using water and oil as the test fluids. 
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Aidina Flow 

A Experimental Data for the Wire-wrapped Interior Subchannel Cl81 

--Prediction for the Bare Interior Subchannel [This Work1 
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aExperimental Data and PredictIon for the Circular Tube C61 

102 103 

Rayleigh Number, RaH = (Gro/Re)/4 

FIG. 8. Experimental data and prediction of the Nusselt number for the MIT 19-rod wire-wrapped bundle. 

The friction factor ratio (f/fO) was plotted against 
Gr,/Re, and the data were grouped based on the 
Graetz number, defined by 

Gz = (Re Pr)/(z/De) (56) 

where z equals zero at the inlet of the pipe. Fully 
developed flow would thus correspond to a Graetz 
number approaching zero. Since the velocity field dis- 
tortion due to buoyancy increases as the flow 
develops, one would expect the analytical solution for 
fully developed flow to envelope the experimental data 
from above. Bishop et al. [8] compared these data 
with mixed convection friction factors for circular 
tubes in aiding flow. It was found that the analysis 
enveloped the experimental data from above, which 
was attributed to flow development effects. Kemeny 
and Somers used the bulk-averaged temperature (as 
opposed to the spatially-averaged temperature) to cal- 
culate the gravity pressure drop in the tube, and thus 
the data presented should more correctly be compared 
with the modified friction factor defined here. When 
this is done [26], it is found that although the modified 
friction factor analysis lies closer to the data, there is 
still sufficient discrepancy to question the validity of 
attempting to apply the laminar, fully developed flow 
analysis to these data. Indeed, Kemeny and Somers 
report that nearly all the data presented lie in the 
turbulent regime. 

5.2. Nusselt number 
Efthimiadis and Todreas [ 181 have obtained mixed 

convection interior cell Nusselt number data from 
a 19-rod wire-wrapped triangular array bundle with 
P/D = 1.25 and H/D = 35.2, where H is the axial 
helical pitch of the wire. The experimental data are 
compared to the analytical solution for a bare sub- 
channel with P/D = 1.25, along with the circular tube 
data and prediction of Hallman [6] in Fig. 8. It is 
seen that our solution adequately predicts the wire- 

wrapped subchannel data up to a Rayleigh number of 
about 600, i.e. (Gr,/Re)/4 x 600 whereas the circular 
tube results lie below the subchannel values for 
P/D = 1.25. Also the wire-wrapped subchannel data 
fall below the bare subchannel prediction starting 
from Gr,/Re around 2500, which is presumably due 
to spacer wire which delays the local buoyancy effect 
at the heated surface by periodically disturbing the 
thermal boundary layer at higher ranges of GrJRe. 
This in turn means that it may not be conservative to 
apply bare subchannel Nusselt numbers to a wire- 
wrapped subchannel when Gr,/Re > 2500. For the 
purpose of comparison between the bare and wire- 
wrapped subchannels, the Nusselt numbers in Fig. 8 
were based on Gr,/Re rather than on GrJRe because 
the equivalent diameters of the two bundles differ for 
the same P/D ratio. 

6. CONCLUSIONS 

(1) It has been found that natural convection effects 
can significantly distort the forced convection iso- 
thermal velocity profiles, thereby rendering forced 
convection analyses inaccurate for the mixed con- 
vection flow regime. The fully developed laminar 
mixed convection friction factors have been con- 
sistently evaluated using the buoyancy-affected 
velocity gradients at the fluid-solid interface for all 
the channel geometries. 

(2) Two types of mixed convection friction factors 
have been presented in the form of the ratios of their 
values to the forced convection values as functions of 
Gr,/Re or Gr,,/Re, the inner to outer radius ratio for 
the azimuthally symmetric geometries, and the P/D 
ratio for the bare rod subchannels. The first type is 
based on the standard definition of friction factor, 
f/fo, which requires that the spatially-averaged fluid 
density be known if it is to be used in lumped par- 
ameter analyses to calculate the axial pressure gradi- 
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ent. The second type is a modified friction factor. 
(f/&)(1 + F), which allows the calculation of the axial 
pressure gradient based on the bulk mean tempera- 
ture nominally used in lumped parameter analyses. 

The behavior of the modified friction factor as a 

function of Gr,/Re has been found to considerably 
differ from that of the standard friction factor par- 
ticularly for opposing flows in both the annular and 
subchannel geometries. 

(3) Nusselt number results have also been presented 
as functions of Gr,/Re or Gr,,,/Re for the annular and 

subchannel geometries for the condition of cir- 
cumferentially uniform heat flux at the fluid-solid 
boundary. 

(4) For the rod bundle analysis the cell-averaged 
friction factors and the Nusselt number have been 
calculated for the interior and edge channel geome- 
tries correspondmg exactly to the conventional defi- 
nition of subchannels. The results can therefore be 
directly used in a subchannel analysis code. The effect 
of the duct wall on the edge cells has also been quan- 

titatively estimated. 
(5) The standard and modified friction factor ratios 

and the Nusselt number have been fitted to poly- 
nomial equations, i.e. equations (46) (49) and (50), 
respectively. 
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COEFFICIENT DE FROTTEMENT ET NOMBRE DE NUSSELT DE CONVECTION 
MIXTE DANS DES GEOMETRIES VERTICALES ANNULAIRES ET DE SOUS- 

CANAUX 

R&n&-Des solutions analytiques sont obtenues pour des t?coulements verticaux compldtement Btablis 
de convection mixte dans des geometries annulaires et des sous-canaux de grappe de barres. Les coefficients 
de frottement et les nombres de Nusselt sont present&s en fonction du parametre GrJRe. On dbfinit un 
coefficient de frottement modifib pour l’utiliser dans des cas air on ne connait que les tempkatures moyennes 
du fluide comme dans la plupart des experiences unidimensionnelles. On montre que le coefficient de 
frottement modifie peut varier sensiblement a partir de la definition standard, ce qui dtgage la necessitt 
d’utiliser le coefficient de frottement modifie dans les analyses od on utilise la masse volumique moyenne 
pour calculer la composante de gravite dans le gradient axial de pression. Cette etude est comparee aux 

don&es experimentales disponibles dans la bibliographie. 

REIBUNGSBEIWERTE UND NUSSELT-ZAHLEN FUR MISCHKONVEKTION IN 
VERTIKAL RINGFGRMIGEN GEOMETRIEN UND AUSSCHNITTEN 

Zusammenfassmg-Fiir voll ausgebildete, vertikal laminare Mischkonvektions-Stromungen in ring- 
fiirmigen Geometrien und Teilausschnitten herkommlicher Stab-Biindel wurden analytische Losungen 
erhalten. Reibungsbeiwerte und Nusselt-Zahlen wurden dargestellt und angepagt als Funktionen des 
Parameters GrJRe. Ein moditizierter Reibungsbeiwert wird definiert, der in Anwendungen benutzt werden 
kann, wo nur iiber die Masse gemittelte Fluid-Temperaturen verftigbar sind, wie im Fall der Untersuchung 
verteilter Parameter und der meisten eindimensionalen Experimente. Es wird gezeigt, da0 der modifizierte 
Reibungsbeiwert stark von der Standard-Definition abweichen kann, was die Notwendigkeit der Benutzung 
des modiflzierten Reibungsbeiwerts fiir Studien herausstellt, bei denen die Massendichte bent&t wird, 
urn die Gravitations-Komponente des axialen Druck-Gradienten zu errechnen. AnschlieBend wird die 

vorliegende Untersuchung mit experimentellen Daten aus der Literatur verglichen. 

K030WIHHEHTbI TPEHMR M WICJIA HYCCEJIbTA I-IPH CMEIIIAHHOfl KOHBEKHHM 
B BEPTMKAJIbHbIX KOJIbHEBbIX H 3A3OPAX 

AmsoT~IIonynenbt artamirmmcmie pememin ws nonriocrbro P~~BHTLJX BepTaKanbHnx naMmfap- 

~barTenenHiinp~c~emruIHoiiKoHee~~~Ko~uesbaKa~anax~~3830paxnyrKacTeprr~e~.Ko~a- 

mieHTbl TpeNin B YEIcna HyCCeJIbTa IIpeJwTaBJIeHbI KaY @yHKmm UapaMeTpa Gr,/Re. npe&noxeH 
MOLUi&iUHpOB~ K03#IHQHeHTT~HHKLlJlK ECIIOJlb3OBaHEK B TOMCny9ae,KOr~a Ei3BeCTHa yC&Xn- 

HeHHan no 06ae~y rehmeparypa XH~OCTH,K~K Hanpwlep npH amwH3e Me~oaohf ~ycowibrx napaMe+ 

pOB H B 60JIbmHHCTBe OLIEIOMepHbIK 3KClI~EMeHTOB. rfOKa3aH0, 'IT0 MO&Xi~pOBaHHb& 

K03@$ELWeHT TpeHHK MOXeT 3HaYXTeJIbHO OTJIHSi4TbCK OT er0 CTaHJUlpTHOrO On~AeJleHHK, 'iT0 IfOn- 

'IepKHBaeT HeO6xOLniMCCTb HCl'lOJIb3OBaHHff 3TOrO IfapaMeTpa &III aHaJIHTWWKOr0 H‘XJIe~OBaHHX B 

TOM~JT~, KornaarrnpacueTarpa~~~asa~~~~iicocran~~me~oce~rorp~e~a~eneAIln~cnonb- 

3yeTCK 06E-eMHaK IIJlOTHOCTb. &iIiO CpKBHeHEie pe3yJIbTaTOB aHKJIH3a C HMeIOlWiMHCR B JIATepaType 


