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Abstract—Analytical solutions are obtained for fully developed vertical laminar mixed convection flows
within annular and conventional rod bundle subchannel geometries. Friction factors and Nusselt numbers
are presented and fitted as functions of Gr,/Re. A modified friction factor is defined to be used in
applications where only bulk-averaged fluid temperatures are available, as in the case of lumped parameter
analyses and most one-dimensional experiments. It is shown that the modified friction factor can vary
significantly from the standard definition, which highlights the necessity of using the modified friction
factor in analyses where the bulk density is used to calculate the gravity component of the axial pressure
gradient. Finally, the present analysis is compared with experimental data available in the literature.

1. INTRODUCTION

MIxED convection (also referred to as combined free
and forced convection) in vertical channels occurs
in fluid systems when the externally imposed axial
pressure gradient is sufficiently low to make local
buoyancy effects nonnegligible. These flows can be
encountered in many types of heat exchange equip-
ment where the potential exists for a high power-to-
flow ratio, including nuclear reactors, heat exchan-
gers, and passive solar systems.

A number of workers have determined the laminar
fully developed velocity profile of mixed convection
flow in a vertical circular tube [1-5]. Hallman [6]
obtained extensive heat transfer data for water in a
heated vertical tube for both upflow and downflow in
the developing and fully developed regimes. Kemeny
and Somers [7] also obtained heat transfer data in a
heated vertical tube using water and oil as the test
fluids. In addition, they obtained pressure drop data
which indicated that as the power-to-flow ratio
increased, the frictional loss increased. They ac-
counted for this increase by defining a mixed con-
vection friction factor ratio, f/f,, which increased
with Gr,/Re. The ratio f/f, represents the ratio of
mixed convection to forced convection friction fac-
tors taken at the same Reynolds number. Bishop et
al. [8] obtained an analytical expression for f/f, for
fully developed laminar mixed convection flow in a
circular tube for heated upflow. Heated downflow,
however, was not included.
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Sherwin [9] has similarly presented an analysis of
fully developed laminar mixed convection flow
through an annular duct with its inner radius heated.
Velocity profiles, temperature profiles, and Nusselt
numbers were presented for an outer radius to inner
radius ratio of three. The limiting Nusselt number
obtained as Gr,/Re approached zero was consistent
with the forced convection result of Lundberg et al.
[10] for this radius ratio. Sherwin also obtained heat
transfer data for downflow [9] in the heated annulus
which, however, did not match the trends of the analy-
sis due to buoyancy-induced turbulence. Maitra and
Raju [11] extended Sherwin’s analysis to higher
Gr,/Re, although the validity of their analytical result
is questionable since, for the range investigated, flow
reversal in some regions of the channel is predicted
which violates the assumptions of the original analy-
sis. They do, however, present data for heated upflow
through an annular channel, and the data do follow
the analysis trend of an increase in the Nusselt number
as heating is increased. An analytical prediction of the
friction factor ratio was not made.

Several workers have investigated the buoyancy
effects on fully developed laminar flow through infi-
nite rod bundle geometries [12-15]. Kim and Wolf
[16] predicted mixed convection subchannel friction
factors and Nusselt numbers for finite rod bundles
with heated upflow. Wang et al. [17] investigated the
buoyancy effect on subchannel friction factors and
Nusselt numbers for finite rod arrays of triangular
and square shape for both heated upflow and heated
downflow. The mixed convection friction factors pre-
sented, though, were not computed directly from the
calculated velocity profile, but rather from a quantity
that is dependent on the choice of reference tem-
perature (or density) in the channel. Efthimiadis and

2175



2176

V. IANNELLO et al.

NOMENCLATURE

A; cross-sectional flow area r, outer radius or distance to zero shear
ber, &, bei, & J, (1Y) = L(i"%¢) stress plane

= ber, & 4ibei, ¢ e duct wall distance
bei, &  d(bei, &)/d¢ R dimensionless radial coordinate, r/D,
ber, ¢ d(ber, &)/dé Ray, Rayleigh number, (Gr,/Re)/4
c, coolant specific heat at constant Re Reynolds number, p,u,D./u

pressure R, r/D,
D rod outside diameter R, ro/D.
D, equivalent hydraulic diameter R, rol D
f Darcy-Weisbach friction factor s denominator in the angle of symmetry,
F modification parameter for friction /s

factor, +(2Gr,/Re)T,/f Re t temperature
g gravitational acceleration T dimensionless temperature,
Gr, Grashof number, p2BgD2q" /ku? (t—~1)k/§"' D,
Gr,p (D/D)*Gr, u axial velocity
Gz Graetz number, Re Pr/(z/D.) U dimensionless axial velocity, u/u,
H wire wrap lead length w gap distance
i NES 2w/D  gap to diameter ratio
I, modified Bessel function of first kind of z axial coordinate

order 0 zZ dimensionless axial coordinate, z/D..
J, Bessel function of first kind of order 0
k thermal conductivity
K, modified Bessel function of second kind O Tcck symbols o

o inner-to-outer radius ratio of annulus,

Qf order (.)m - rr
ker, ¢, ke, & Y0 . 'f). = K677 B thermal expansion coefficient,

= ker, &+ikei, & )
7 mass flow rate (1/p)(—0p/0T),

1 (4(Gr,/Re)(Py/P N
" outward normal d narilic viscosit
N dimensionless outward normal, n/D, g cg latitudinal (or)‘/cone’) angle
;Vu IIjrlgZze\:llrtenumber, ["/(t, — t,)WD. k) g ﬂuj d d‘;nsli t(y o I
. azimuthal (or ‘polar’) angle

![3_ dp/ dZ}) +;;if:gs§ure gradient T, wal.l shear stress
P dimensionless pressure, p/pou2 ¢ variable.
Py heated perimeter
P, wetted perimeter Subscripts
Pr Prandtl number, c,u/k b bulk averaged
P/D  pitch to diameter ratio f frictional
q heat input rate FC forced convection {equation (39))
q’ average heat flux, ¢/P,L i inner
Q dimensionless heat flux, MC mixed convection (equation (39))

~kViq" = q"|q" 0 equivalent isothermal, reference, outer
r radial coordinate or zeroth order
r inner radius w wall.

Todreas {18] obtained mixed convection pressure
drop and heat transfer data from bare and wire-
wrapped bundles with P/D ratio equal to 1.25. The
Nusselt numbers measured for the wire-wrapped
bundie matched Wang et al.’s analysis [17] for the
range of Gr,/Re values considered.

This review of the literature for fully developed
laminar mixed convection flow illustrates that while
the circular tube has been extensively studied, other
geometries of interest have not. For example, Nusselt

number results exist only for the inner radius heated
annulus [9], and for heated upflow and heated down-
flow in subchannels of finite triangular and square
arrays [17].

An additional problem arises in the evaluation of
the gravity term of the momentum equation. In order
to properly evaluate this term, the spatially-averaged
fluid density must be known. Typically, however, the
bulk-averaged (mixing-cup) fluid properties are
measured in experiments and calculated by lumped
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parameter analysis codes. For mixed convection flows,
the bulk-averaged and spatially-averaged densities
may significantly differ, and thus there is an inherent
error introduced by using the bulk density to compute
the gravity pressure gradient. Alternatively, this error
can be eliminated by including a separate correction
term in the momentum equation to account for this
difference. Instead of correcting both the friction and
gravity pressure gradient terms for mixed convection
effects, the gravity correction term is included in the
friction term. In doing so, a modified friction factor
is defined which includes the gravity pressure gradient
correction term. This modified friction factor can then
be used in combination with the bulk density to cal-
culate the total (gravity plus friction) pressure gradi-
ent in a channel without error.

This work was performed to obtain standard and
modified friction factor and Nusselt number results
under fully developed laminar mixed convection con-
ditions for a variety of azimuthally symmetric and
subchannel geometries under aiding and opposing
flow conditions for which solutions do not presently
exist. In providing these results, general solutions to
the conservation equations are obtained in non-
dimensional form. These can then be used to obtain
solutions for other geometries not considered here
as the need arises. The Nusselt number results are
compared with applicable experimental data.

The tabular and graphical results for all geometries
investigated in this work are available in ref. [26].

2. GENERAL NON-DIMENSIONAL SOLUTION
OF THE CONSERVATION EQUATIONS

2.1. Velocity profile

It is desired to solve for the fully developed laminar
velocity and temperature distributions for fluid flow-
ing in vertical heated ducts in the mixed convection
regime with no internal heat generation and no sec-
ondary flows (i.e. no 8 and r components of velocity).
The fluid is heated with a uniform axial heat flux
prescribed on one surface of the duct, and the heat
flux may vary azimuthally.

In the present analysis only the axial velocity dis-
tributions are considered in the r- and #-directions.
While the radial and azimuthal velocities might still
exist within the channel due to the azimuthally varying
heat flux boundary condition, these secondary flows
are neglected since:

(1) the time scale of the secondary flow motion is
typically much greater than that of the bulk axial flow
so that it should have negligible effect on the axial
flow profile;

(2) their neglect leads to conservative upper limit
values for both the friction factor and the Nusselt
number.

To simplify the analysis, it will be assumed that the
fluid specific heat, viscosity, and thermal conductivity
do not vary with temperature. Following the Bous-
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sinesq approximation, variations of the density will
also be ignored except for the gravity body force term
of the momentum equation where the density is
assumed to be of the form

p = po[1—=p(t—1,)]. (M

The determination of the reference temperature ¢, and
reference density p, is presented later.

From the previous assumptions, the momentum
and energy conservation equations are

d
0=~ L F pugll—pu—tN+avu @)

ot
PoCoti = = kV?t

3 (3a)

where z increases in the direction of flow. In equation
(2), the minus sign on the second term on the right-
hand side applies to flows in which the buoyancy force
is in the same direction as the bulk flow (heated upfiow
or cooled downflow), a situation called ‘aiding flow’.
The plus sign applies to flows in which the buoyancy
is in the opposite direction to the flow (heated down-
flow or cooled upflow), a situation called ‘opposing
flow’.

Now we neglect the axial mass flux gradient,
d(pu)/0z, by applying the Boussinesq approximation
and the fully developed flow condition, and approxi-
mate the mass flow rate as v = p,u, A4, by neglecting
the spatially-averaged product of spatial variations
in density and velocity. Then the axial temperature
gradient, 8¢/0z, can be related to the duct wall heat
flux through an energy balance as

o P,
0z pooAsc,

which is substituted into equation (3a), the result
being
Ph u

§ — —=kVi

e (3b)

Equations (2) and (3b) can now be nondimen-
sionalized as

dp Gr, .2
P,
4P—"U= V*T. Q)

w

By applying the non-dimensional Laplacian oper-
ator V*? to equation (4), and utilizing equation (5),
T can be eliminated, the result being

Gr, P, h
0=+4-12—+ x4
4 e B, U+V**U (6)
since (dP/dZ) Re is a constant term and is eliminated
in this process. The general solution (in polar coor-
dinates) to equation (6) can be written as



2178 V.
= 3 {[a, ber, MR) +b, bei, (nR) +c, ker, (nR)
V=0

+d, kei, R)][ecos (vO) + fsin (vO)]} (T)

for aiding flow, and
Z {la,d,(1R)+b,Y,(nR) +¢,I,(nR)

+d,K,(nR)][ecos (v0) + fsin (v0)]} (8)

for opposing flow, where the parameter # is defined
by

Gr, P,
4__ 77~h
=4 e B &)

For geometries with azimuthal symmetry, equa-
tions (7) and (8) reduce to

U = a, ber, (nR)+b, bei, (nR) +c, ker, (nR)
+d, kei, (qR) (10)
for aiding flow, and
U=a,J,(nR)+b,Y,(nR) +c.L,(nR) +d,K,(nR)
(in

for opposing flow.

For triangular and square arrays, the boundaries
0 = 0 and =/s are lines of symmetry where s = 6 and
4, respectively. Therefore

ou
00

ou

== =o
o=0 €0

(12)

B=mn/s

Applying equation (12) to equations (7) and (8) yields
f = 0 and specifies possible values of v as

n=0,1,2,... (13)

v = ns,

so that equations (7) and (8) can be written as

U= Y {[a, ber,, (1R)+ by, beiy, (1R)

n=0
+ ¢, ker,, (1R) +d,, kei,, (nR)][cos (nsO)]}  (14)

for aiding flow, and

sl

U=}, {lanJu(nR)+b,Y,(nR)

n=0

L, (1R) + d, K,,(qR)][cos (nsO)]}  (15)

for opposing flow. The constant e has been incor-
porated into the constants a,,, b, ¢,, and d,,,.

The general solutions for both the azimuthal sym-
metric geometry and the rod array cases have four
sets of constants. These sets of constants are evaluated
from the velocity and heat flux boundary conditions.
The heat flux at the boundaries is next shown to be
a function of V*>U. First, a dimensionless heat flux is
defined by

+

kVt

q’
L= = —V*T. (16)
Q q 7
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After applying the V* operator to equation (4) and
rearranging, one obtains

a7
Combining equations (16) and (17) yields

V*.‘Sbr
= 3
Q=4 Gr,/Re (18)
Equation (18) can be used to relate the heat flux
boundary conditions to V**U.

2.2. Friction factor calculation

In the last section it was shown that for fully
developed conditions the mixed convection velocity
profile in the duct is a function of Gr,/Re, boundary
conditions, and geometry. Since the friction factor is
directly related to the shear at the fluid—solid interface
which results from a velocity gradient normal to the
surface, one would expect mixed convection effects to
alter the friction factor from the forced convection
value. In this section it will be shown how the friction
factor is calculated once the velocity profile is known.

A simple force balance shows that

dp 1
REAREIRTE

where [—dp/dz], is the pressure gradient due to skin
friction, and 1,, is the fluid shear at the duct wall. For
a Newtonian fluid

(19)

u
= 2
Tw .u a (“0)
where the normal derivative is defined by
i
= 21
n = COS ¢ —sin ({) 2h

and ¢ is the angle between the surface normal and the
O-direction. (For a radial surface, ¢ = 0.) After some
algebraic manipulation, and introducing the Darcy
friction factor, i.e.

- dp| D, 5
/= [“ d} PX: .

one can solve for f Re, as

8 ¢U
= (23
S Re PWJ; oNdP (23)

where the non-dimensional normal derivative is
defined by

,\

2
3R n ¢ R3O 29

0
~— = COS
ON 4)

For mixed convection flow, we have defined a mixed
convection friction factor ratio, f/f,, where [, is the
forced convection friction factor for the same Reyn-
olds number as for f. For fully developed laminar
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flow, f, Re is a constant, so that the friction factor
ratio can be evaluated from

f Re
VIR = F e

As Gr,/Re approaches zero, f/f, approaches one.

25)

2.3. Temperature profile

The expressions needed to calculate the mixed con-
vection friction factor were calculated directly from
the velocity profile. This is because frictional pressure
drop is caused by fluid shear at the wall. Once the
velocity profile in the channel is known, one can solve
for the temperature field by solving equation (4) for
T. The one problem is that the (—dP/dZ) Re in equa-
tion (4) is still an undetermined constant. It will be
shown that if the reference temperature is chosen to
be the spatially-averaged temperature, the constant
(—dP/dZ) Re can be related to the constant f Re
already calculated from the velocity profile.

First, —dP/dZ as defined is expanded to

dP D, dp _

Tz gl A TPy
If p, is assumed to be the spatially-averaged density
in the cross-section of the duct, then p.g is the axial
pressure gradient due to the gravity body force. The
expression in square brackets in equation (26) must
therefore represent the axial pressure gradient due to
friction, [ —dp/dz] »- since

(26)

dp | dp dp
RN
Equation (26) can therefore be written as
dP D, dp
| I ®)

Combining equation (22) with equation (28), thereby
eliminating [—dp/dz], results in

(29

Now that the constant [ —dP/dZ] Re is known, equa-
tion (4) can be directly solved for T, resulting in

dp
— —=Re+V**U
_. dz
T=7%F

Gr,/Re (30)

Equation (29) is valid only if p, is calculated at the
spatially-averaged temperature defined as

1
1, = EJL[ wrdrdd.

If another reference density and temperature are
chosen, equation (29) will give erroneous results. This
was the source of error in ref. [17], where an arbitrary
reference temperature was chosen.

(3D
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The bulk-averaged temperature for axial flow is
defined as, with m taken as p,u,4;

(32a)

1
t, = utr drdf
° poquJ L,p
which can be simplified consistent with the Boussinesq
approximation of neglecting density variations except
for the buoyancy term in the momentum equation to

1
t, = qurfLrutr drdf

since p, » p—pPo.
Substituting U, T and R for u, t and r, respectively,
results in

(32b)

DZ
T, = eff UTRdRd®.
Ar J Ja

(32¢)
Once U and T are known, equation (32c) can be
integrated numerically. It will be shown that T} is a
necessary parameter for the calculation of the modi-
fied friction factor of the next section.

2.4. Modified friction factor

To calculate the axial pressure gradient, it is neces-
sary to evaluate the correct pressure gradient due to
gravity. Typically, the gravity pressure gradient is cal-
culated assuming the bulk-averaged temperature and
density are equal to the spatially-averaged tem-
perature and density, since the bulk temperature can
be calculated from lumped parameter analysis without
knowledge of the details of the temperature field. As
Gr,/Re increases, the error associated with this
approximation also increases.

Specifically, the pressure gradient should be cal-
culated using the spatially-averaged density in equa-

tion (27)
dp dp
l:—&] +‘p"g+|:_&]f

whereas it is usually approximated using the bulk
density, i.e.

(33)

(34)

Therefore, we seek an easy way to correct for using
the bulk density to compute the gravity term in the
momentum equation, i.e. to correct the right-hand
side of equation (34) to eliminate the approximation.
Rather than correcting the gravity term, however, we
chose to correct the friction term since the designer
will know only the bulk density through his lumped
parameter tools, and the correction factor can be read-
ily calculated from previously determined non-dimen-
sional parameters. This leads to the formulation of
the correction factor F such that
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dp| dp
{_&j'— ipbg‘l-lz_a;:,f(l“‘F)- (35)

Since equation (33) can be expanded as

d d
[— gﬂ = tpgt(po—pu)g+ [— agl (36)

we see that the factor Fis given by

Fe g PomPo)Y (37)

B

As can be seen from equation (37), the factor F rep-
resents the ratio of the gravity pressure gradient cor-
rection to the friction pressure drop, and equals zero
for forced convection flows. Substituting equations
(1) and (22) into equation (37), the desired expression
for Fis obtained as

26y
po‘B(tb——tc)g Re
=+ =+t
F=z [ potg = fRe (38)
D. 2

Thus, Fcan easily be calculated from previously deter-
mined non-dimensional parameters.

Hence, the ratio of the mixed to forced convection
friction pressure drop which should be used when the
axial pressure gradient due to gravity is calculated
using the bulk density (as is typically done in lumped
parameter codes) is

S pu;
S I+F .
Mc_[f_ipld_z,]i = PLi(:l - L (14+F) (39)
FC["dP/dZ]/ /‘3 P”é Jo '
D. 2

2.5. Nusselt number
Once the temperature distribution is known, the
Nusselt number can easily be calculated. By definition

(40)

where 7, is the average temperature of the heated
surface, which can be calculated from

(41)

Equations (40) and (41) can then be nondimen-
sionalized to yield

(42)
and
(43)

In geometries where more than one wall is heated, one
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can use equations (42) and (43) to define a different
Nusselt number for each wall. It must be noted, how-
ever, that in situations where more than one wall is
heated, the Nusselt number obtained for each heated
surface will also depend upon the heat fluxes on the
other surfaces through T,. This phenomenon is not
unique to mixed convection but occurs also in forced
convection.

Now that the generalized conservation equations
have been presented, one can proceed to solve the
equations for two sets of geometries. For the first set,
azimuthal symmetry is assumed, thereby simplifying
the analysis. The second geometry set involves sub-
channels occurring in rod bundle geometrics where
azimuthal dependencies cannot be ignored.

3. GEOMETRIES WITH AZIMUTHAL
SYMMETRY

3.1. Velocity profile

Four geometries are investigated in this section. For
each geometry, aiding and opposing flow conditions
are evaluated. For the first geometry, the duct is
assumed to be concentrically annular in shape. The
heat flux is imposed at the inner radius and an adia-
batic outer radius is assumed. For the second
geometry, the duct is annular with an adiabatic inner
radius and heat flux imposed at the outer radius. The
third geometry is the circular duct, with the heat flux
imposed at the wall. The fourth geometry is called the
equivalent annulus because, like the annulus, it has an
inner and outer radius. The difference is that instead of
a no-slip velocity boundary condition being imposed
at the outer radius, a zero shear condition is assumed
for the equivalent annulus. The equivalent annulus is
of interest because it can be used as an approximation
to rod array geometries with large spacing, as will
be discussed later. For each case, the parameter x is
defined as the inner radius to outer radius ratio (z = 0
for the circular channel). The solutions for the velocity
profiles are obtained by computing «,, b,, ¢, and d,
from the velocity and heat flux boundary conditions
at the inner and outer radii.

Figure 1 shows the aiding flow velocity profile for a
typical azimuthally symmetric geometry (inner radius
heated annulus). The effect of increasing Gr,/Re for
aiding flow is to redistribute the flow towards the
heated wall. Mass continuity requires a corresponding
decrease of flow near the adiabatic boundary. For
opposing flow, the effect is to redistribute the flow
away from the heated wall [26]. There is a corres-
ponding increase of flow near the adiabatic boundary.

3.2. Friction factor

In the previous section it was shown that the veloc-
ity profile in a duct will be distorted as Gr,/Re in-
creases. As the velocity profile changes, the fluid
shear at the no-slip surfaces must also change, since
shear is proportional to the velocity gradient. For
aiding flow, the shear will increase at the heated wall
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FiG. 1. Velocity profile for the inner radius heated annulus
for aiding flow.

and due to mass conservation, decrease at the adia-
batic boundary. For opposing flow, the reverse will
occur. These effects cause the friction factor to vary
with Gr,/Re.

The friction factor can be evaluated using the pre-
viously derived equations (23) and (24). For geome-
tries with azimuthal symmetry, the surface normal
must always be radial so that ¢ = 0. Equations (23)
and (24) can therefore be combined as

g8 | dU
o | o

The parameter f, Re can be evaluated from the stan-
dard results

fRe= 44

e

64 circle
1—a?)(1—a)?
64 £~—~a~)(~—?)—2 annulus
1—af (A=)’
foRe= < inl
o
64 (-’ equivalent
s 2 s 1 annulus
ol =3+40°—a*+41In-
L «
45)

which can be obtained by solving equation (4) with
Gr,/Re = 0, applying the appropriate velocity bound-
ary conditions, and substituting the expression for U
into equation (44). The friction factor ratio can then
be evaluated from equation (25).

The parameter f/ £, is plotted against Gr,/Re in Fig.
2 for the inner radius heated annulus. For large «
values as the value of Gr,/Re increases, the velocity
distortion increases, producing increased friction fac-
tors for aiding flow. For small « the decrease in shear
at the adiabatic boundary more than compensates for
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Friction Factor Ratio
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Grashof to Reynolds Number, Grq/Re

Fi1G. 2. Standard and modified friction factor ratios for the
inner radius heated annulus for aiding flow.

the increase at the heated surface. As a result, the f/f,
ratio decreases with increasing Gr,/Re for a = 0.1,
Corresponding calculations for opposing flow dem-
onstrated a decrease in friction factors with increasing
Gr,/Re for « = 0.9 and 0.5 and the inverse behavior
for o = 0.1 [26].

The friction factor ratio results are fitted to the form

In(f1f) = X, 94 (46)
where
A = In(1+Gr,/Re). (47)

The results are presented in Tables 3-2 through 3-7 of
ref. [26]. The values of g; are obtained by least squares
error fitting, and less than 5% fitting error results
when Gr,/Re is within the range listed in the table.

3.3. Modified friction factor

We can use equations (29) and (30) to solve for the
temperature field in the duct once we have obtained
an expression for f Re. Then, equation (32) can be
used to find the dimensionless bulk temperature, T,.
For geometries with azimuthal symmetry, equation
(32c) simplifies to

DZ R,
T, =2n J UTRAR (48)

Ag R
which can be integrated numerically. Once T, is
obtained, equation (38) is used to solve for F.

Figure 2 shows how the modified friction factor
differs from the standard friction factor for the inner
radius heated annulus. Corresponding calculations
for opposing flow demonstrated a more pronounced
difference since the standard friction factor decreased
with Gr,/Re, while the modified friction factor
increased with Gr,/Re for « = 0.9 and 0.5 [26].

The above modified friction factor ratio results are
fitted to the form
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F1G. 3. Mixed convection Nusselt number for the inner radius
heated annulus for aiding flow.
4

In[(f/f)A+F)] =3 g/

i=0

(49)

as was done for the standard friction factor ratio. The
resulting values for g, are listed in Tables 3-8 through
3-13 of ref. {26].

3.4. Nusselt number

The determination of the Nusselt number is trivial
once the temperature field is known. The Nusselt num-
ber is given directly by equation (42).

Figure 3 shows the Nusselt number vs Gr,/Re for
the inner radius heated annulus. The Nusselt number
increases for aiding flow due to increased convection
at the diabatic (i.e. heat transfer) wall, and it decreases
for opposing flow due to decreased convection at the
diabatic wall.

The Nusselt number results are also fitted to the
form

4
In(Nu) = 3 g4’ (50)
i=0

as was done for the friction factor ratios, The values
of g, are presented in Tables 3-14 through 3-17 of ref.
[26] for the inner radius heated and the outer radius
heated annuli, but not for the equivalent annuli which
exhibit fairly constant values of the Nusselt number
for given o ratios for Gr,/Re < 10%

Lundberg ef al. [10] have solved for the heat transfer
in annular geometries for forced convection, hydro-
dynamically developed, thermally developing flow.
Table 1 compares their results for thermally developed
flow with the results from the present mixed con-
vection analysis, which were obtained by setiing
Gr,/Re = 0.1, We see excellent agreement with the
forced convection analysis for all values of « reported.

4. ROD BUNDLE GEOMETRIES

4.1. Introduction
The choice of bundle cells is made such that zero
shear stress and adiabatic boundary conditions can

V. IANNELLO ¢! al.

Table 1. Forced convection Nusselt numbers for the annulus

Heating Forced convection

a  location Aiding Opposing analysis {10}
I 32.704 32,702 3270
0.02 Fa 4.734 4,734 4.734
¥ 17.811 17.811 17.81
065 4792 4791 4.791
0.10 r, 11.906 11.906 11.90
: v, 4834 4834 4.834
0.25 i 7.754 7.753 7.753
o ro 4.905 4,904 4.904
.50 " 6.184 6.181 6.181
v

5.037 5.036 5.036

be applied at inter-cell boundarics. The symmetric
segments for a triangular array are shown in Fig. 4.

A problem arises, though, for the edge symmetric
segments, since as illustrated in Fig. 4 these are not
the geometries conventionally chosen for the noding
scheme in the codes such as ENERGY-IV {25] and
COBRA. To obtain the friction factors and Nusselt
numbers for these subchannel geometries, the sym-
metric edge segments are broken into three segments
with 0 < 8 < n/2, r/2 < 0 < 57/6, and 5#/6 < 0 < =7,
respectively, for the triangular array, and into two
segments with 0 < 6 < n/2 and n/2 < § < =7, respec-
tively, for the square array. The segments with
0 < 6 < n/2 corresponds exactly to the conventional
edge subchannel geometry.

In the interest of brevity, only the friction factor
and Nusselt number results for the conventional tri-
angular interior subchannel are presented in this
paper for P/D =125 and 1.08 to simulate liquid
metal reactor fuel and blanket assemblies. Reference
[26] contains the results for other subchannels: tri-
angular conventional edge, triangular symmetric
edge, square interior, square conventional edge and
square symmetric edge.

The application of the mixed convection sub-
channel friction factors is treated in our subsequent
papers relative to reactor core flow redistribution and
frictional loss. The difference in flow splits is numeri-
cally small. However, the significant consequence of
design importance is the bundle frictional pressure
drop increase of as much as 85% of the corresponding
forced convection value at the bundle Re = 470 and
Gr,/Re = 3500 under power skew condition, which
highlights the importance of utilizing the mixed con-
vection friction factors when the buoyancy plays a
dominant role.

Finally, the mathematically predicted flow reversal
might not be physically observed due to the buoyancy-
induced premature transition to turbulence (in case
of liquid) and the intersubchannel crossflow in rod
bundles. The application of the proposed correlations
should thus be limited to steady, laminar, fully
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FiG. 4. Symmetric segment (—-) and conventional subchannel (—) geometries for the triangular rod array.

developed, incompressible mixed convective flows
with no recirculation.

4.2. Two-region analysis

An approach where the boundary conditions apply
to only one domain (such as the coolant region) is
called a one-region analysis. A more detailed
approach would be to assume a uniform or azi-
muthally varying heat flux along the inner clad
surface. For this approach all the fluid region bound-
ary conditions are not explicitly prescribed. Instead,
the clad and coolant region boundary conditions are
matched at the clad—coolant region interface. This
approach is called a two-region analysis. A package
of computer programs, originally developed by Kim
and Wolf [16], and later modified by Wang ez al. [17],
solves the two-region problem under the assumptions
of steady state, thermally and hydrodynamically fully
developed laminar flow with no heat generation in the
coolant and clad regions. The one-region problem is
actually a limiting case of the two-region problem
and is obtained when the clad thermal conductivity is
much lower than the fluid thermal conductivity so that
the heat flux lines remain radial (and thus azimuthally
uniform) throughout the clad region. Since the two-
region analysis code was available, it was decided to
use it with a low clad-to-coolant thermal conductivity
ratio, Kguafkaua = 0.001, to simulate the one-region
analysis with circumferentially uniform heat flux
along the clad—coolant interface.

The unknown coefficients in the general solutions
for the non-dimensional coolant velocity and tem-
perature, and for the clad temperature, are determined
by using the boundary conditions along the zero shear

cell boundaries, the clad outside surface, the clad
inside surface and, for edge cells, the duct wall inner
surface. The boundary conditions can be satisfied con-
tinuously at the outside and inside clad surfaces. The
imposed conditions along the polygonal cell bound-
aries and duct wall surface, however, are satisfied by
a point-matching technique applied at a prescribed
number of points. This leads to a set of linear equa-
tions which can be solved by standard methods.
Details of the two-region analysis can be found in ref.

[17).

4.3. Velocity profile

Equations (14) and (15) can be used to obtain the
velocity profiles for the interior and edge cells in aiding
and opposing flows, respectively. The four sets of
cocfficients: a,,, b, c,, and d,, are computed using
the two-region analysis codes [17].

Our subchannel results are presented vs a Grashof
number based on the rod outside diameter, D, instead
of the equivalent diameter, D, noting that the P/D
ratio and the equivalent diameter are not independent
of each other. The choice of the heated rod diameter
as the characteristic length for the Grashof number
reflects the existence of the thermally-driven buoyancy
effect in heated rod bundle geometries. For other
geometries, such as our outer radius heated annulus,
although the outside diameter could be used as the
characteristic length, we chose to use D, to be con-
sistent with the literature. The Reynolds number, how-
ever, is always based on the equivalent diameter. The
two Grashof numbers are related by

D 4
Gr, = Gr,, (-5) ) (51)
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Figure 5 shows how increasing Gr, ,,/Re distorts the ws (60U
velocity profiles for a typical triangular array interior , \0R R df
subchannel. At low Gr, /Re, the velocity profiles are f Re = N (52)

parabolic and highly nonuniform over the regions
within the cell. With increasing Gr, ,/Re, we observe
that fluid is redistributed within the cell towards the
rod surface for aiding flows and away from it for
opposing flows. Consequently, the flow becomes more
uniform for aiding flows and more nonuniform for
opposing flows. These local flow redistribution effects
are more predominant in the square array than in the
triangular array for the same P/D ratio [26].
Moreover, the local buoyancy effects are more pro-
nounced for P/D = 1.25 than for P/D = 1.08.

4.4, Cell-average friction factor

The friction factor is calculated here using equation
(23), which can be rewritten for interior subchannels
as

j" R.d0
[}

where s = 6 for triangular arrays and s = 4 for square
arrays. For interior subchannels, the wetted perimeter
includes only the outer rod surface, while for edge cells
both the rod surface and duct wall must be included.

The f Re results for the limiting case of forced con-
vection (Gr, »/Re = 0.5) are presented in Table 2 for
the triangular array interior subchannels. As shown,
the agreement is excellent. The aiding flow predictions
are slightly higher than the opposing flow calcu-
lations, which is in accord with the heat addition effect
of slightly increasing the velocity gradient near the
wall for aiding flow and decreasing it for opposing
flow.

Table 2. Forced convection f Re results for the triangular interior subchannel

Sparrow and

Loeftler Axford Rehme
P/D 1201 [22] 221
1.05 62.21 61.91 62.32
1.08 74.21 — —
1.10 81.74 81.51 83.24
1.15 92.35 92.56 92.88
1.20 99.96 99.80 100.80
1.25 105.27 105.20 —
1.50 124.49 124.14 ——
1.80 144.14 — 143.88
2.00 156.95 157.54 154.20

233.84 —

Present analysis

Aiding Opposing
Standard Modified Standard Modified
62.90 62.90 62.82 62.89
74.42 74.42 74.37 74.39
81.74 81.74 81.52 81.55
92.64 92.64 92.00 92.04
99.83 99.83 99.48 99.54
105.22 105.22 105.02 105.17
124.17 124.14 123.61 124.14
14422 144.00 143.88 143.97
158.08 157.54 156.95 e
244.58 232.70 220.00 —
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For edge cells, where a segment of interior sub-
channels is included, the friction factor results are
split up such that they can be directly applied to the
conventional geometry of the edge subchannel. For
the conventional edge subchannels in both triangular
and square arrays, the friction factor is defined as

~2 (U
L (‘aﬁ)&"i“"
n/2
0
O oU
— == R, d6
2<P)J; [ (aN)RJ

n\D 9,
[0
0

where 6, = arctan (P/2w), R, = w/{D.cos868), and
J/@N at the duct wall is given by equation (24).

Figure 6 shows the friction factors calculated for
the triangular array interior subchannel. Tables 4-5
and 4-6 of ref. [26] present the regression coefficients
for the fitting equation (46) for standard friction fac-
tors with

fRe=8

(53)

A=In(1+Gr,p/Re). (54)
4.5. Modified cell-average friction factor

In order to compute the modified friction factor
ratio, {f/£.)(1+ F), one needs to obtain the bulk tem-
perature, T,,. Equation (32c) is used, where the area
integrals are performed over the subchannel cross sec-
tions. Tables 4-7 and 4-8 of ref. [26] list the regression
coeflicients for equation (49) with 4 given by equation
(54) in triangular and square arrays. The results for

Table 3. Forced convection Nusselt numbers for the tri-
angular interior subchannel

Dwyer
Sparrow  and

etal. Berry Hsu Present analysis
PID 21} [23] [24} Aiding Opposing
1.05 — 1.06 1.06 1.03 1.07
1.08 — — — 1.95 197
1.10 — 2.94 2.94 292 2.93
1.15 — — 5.14 5.12 5.16
1.20 — 6.90 6.90 6.89 6.90
1.25 — — — 8.14 8.13
1.50 — 11.22 11.23 11.23 11.22
1.80 —_ 13.66 13.67 13.67 14.81
2.00 15.3 15.26 — 15.27 —_
3.00 24.0 — — 24.12 23.98

the typical geometry are also shown in Fig. 6. It is
seen that there exist significant differences between the
standard and modified friction factors.

4.6. Cell-average Nusselt number

As with geometries with azimuthal symmetry, the
Nausselt number can easily be obtained once the tem-
perature field in the cell is known. Nusselt numbers
for the conventional edge subchannel as well as for
the symmetric edge segment are reported in ref. {26].

Table 3 presents the limiting forced convection
(Gr,p/Re =~ 0.5) Nusselt numbers for the triangular
array interior subchannel, which are in good agree-
ment with those in the literature. However, the results
of Sparrow et al. [21] are for a uniform wall tem-
perature boundary condition. For P/D > 2, though,
there is essentially no distinction between the cir-
cumferentially uniform wall temperature and uniform
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F1G. 7. Mixed convection Nusselt number for the triangular interior subchannel.

heat flux conditions, since the azimuthal variation of
either quantity is small. The agreement for P/D = 2
and 3 presents appropriate justification for this state-
ment.

Tables 4-10 and 4-11 of ref. [26] list the regression
coefficients associated with equation (50) for both
triangular and square arrays with A defined by equa-
tion (54). The results for the triangular array interior
subchannel are plotted in Fig. 7. In general, the Nus-
selt number increases for aiding flow due to increased
convection at the diabatic wall, and it decreases for
opposing flow due to decreased convection at that
location.

4.7. Application of equivalent annulus results to the
interior cell geometry

Sparrow and Loeffler [20] solved for the forced
convection friction factors for axial flow in infinite
triangular and square rod array geometries. These
cases correspond to the interior cell geometries inves-
tigated here. They found that as P/D is increased, the
effect of neighboring rods is reduced. Normalizing the
local shear stress around the rod by the average shear
stress and plotting it vs the azimuthal angle 0, they
found that, as the P/D ratio increased, the angular
dependence of the shear stress decreased. Thus, a sub-
channel geometry with large P/D ratios could be
approximated by a geometry with azimuthal sym-
metry. This is the basis for choosing the equivalent
annulus to describe rod arrays with large P/D ratios.
By equating the inner radius of the equivalent annulus
model with the rod outer radius for the interior cell
in the case of equal flow areas, one finds

0.5 /
] [ (PID). (55

_[ n
*= | Stan (@5)

Table 4. Minimum P/D for equivalent annulus approxi-
mation of the interior subchannels

Minimum  Maximum

Case PiD error (%)
Aiding triangular array 1.50 315
Aiding square array 3.00 1.02
Opposing triangular array 3.00 1.27

Opposing square array i

+ Not recommended.

Since the equivalent annulus friction factor cal-
culation is easier to perform than that for the interior
cell, it is desirable to find the range of its applicability.
A comparison, from which Table 4 was constructed,
was made between the equivalent annulus and the
interior cell results, and it illustrates, for the cases
considered, the minimum P/D ratios at which the
equivalent annulus formulation accurately predicts
the interior cell friction factor ratio. It can be seen
that the equivalent annulus approximation can be
used down to a lower P/D ratio for triangular arrays
than for square arrays. The equivalent annulus also
approximates aiding flow more closely than opposing
flow. For opposing flow in a square array, it is not
recommended for any P/D ratio.

5. COMPARISON OF THEORY WITH
EXPERIMENTAL DATA

5.1. Friction factor

There is a scarcity of mixed convection pressure
drop data in the literature as is summarized in the
Introduction. Kemeny and Somers [7] measured
mixed convection pressure drop for aiding flow in
circular tubes using water and oil as the test fluids.
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FiG. 8. Experimental data and prediction of the Nusselt number for the MIT 19-rod wire-wrapped bundle.

The friction factor ratio (f/f,) was plotted against
Gr,/Re, and the data were grouped based on the
Graetz number, defined by

Gz = (Re PP)/(z/D.) (56)

where z equals zero at the inlet of the pipe. Fully
developed flow would thus correspond to a Graetz
number approaching zero. Since the velocity field dis-
tortion due to buoyancy increases as the flow
develops, one would expect the analytical solution for
fully developed flow to envelope the experimental data
from above. Bishop et al. [8] compared these data
with mixed convection friction factors for circular
tubes in aiding flow. It was found that the analysis
enveloped the experimental data from above, which
was attributed to flow development effects. Kemeny
and Somers used the bulk-averaged temperature (as
opposed to the spatially-averaged temperature) to cal-
culate the gravity pressure drop in the tube, and thus
the data presented should more correctly be compared
with the modified friction factor defined here. When
this is done [26], it is found that although the modified
friction factor analysis lies closer to the data, there is
still sufficient discrepancy to question the validity of
attempting to apply the laminar, fully developed flow
analysis to these data. Indeed, Kemeny and Somers
report that nearly all the data presented lie in the
turbulent regime.

5.2. Nusselt number

Efthimiadis and Todreas [18] have obtained mixed
convection interior cell Nusselt number data from
a 19-rod wire-wrapped triangular array bundle with
P/D =1.25 and H/D = 35.2, where H is the axial
helical pitch of the wire. The experimental data are
compared to the analytical solution for a bare sub-
channel with P/D = 1.25, along with the circular tube
data and prediction of Hallman [6] in Fig. 8. It is
seen that our solution adequately predicts the wire-

wrapped subchannel data up to a Rayleigh number of
about 600, i.e. (Gr,/Re)/4 ~ 600 whereas the circular
tube results lie below the subchannel values for
P/D = 1.25. Also the wire-wrapped subchannel data
fall below the bare subchannel prediction starting
from Gr,/Re around 2500, which is presumably due
to spacer wire which delays the local buoyancy effect
at the heated surface by periodically disturbing the
thermal boundary layer at higher ranges of Gr,/Re.
This in turn means that it may not be conservative to
apply bare subchannel Nusselt numbers to a wire-
wrapped subchannel when Gr,/Re > 2500. For the
purpose of comparison between the bare and wire-
wrapped subchannels, the Nusselt numbers in Fig. 8
were based on Gr,/Re rather than on Gr, ;,/ Re because
the equivalent diameters of the two bundles differ for
the same P/D ratio.

6. CONCLUSIONS

(1) It has been found that natural convection effects
can significantly distort the forced convection iso-
thermal velocity profiles, thereby rendering forced
convection analyses inaccurate for the mixed con-
vection flow regime. The fully developed laminar
mixed convection friction factors have been con-
sistently evaluated using the buoyancy-affected
velocity gradients at the fluid-solid interface for all
the channel geometries.

(2) Two types of mixed convection friction factors
have been presented in the form of the ratios of their
values to the forced convection values as functions of
Gr,/Re or Gr, ;,/Re, the inner to outer radius ratio for
the azimuthally symmetric geometries, and the P/D
ratio for the bare rod subchannels. The first type is
based on the standard definition of friction factor,
f1/o» which requires that the spatially-averaged fluid
density be known if it is to be used in lumped par-
ameter analyses to calculate the axial pressure gradi-
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ent. The second type is a modified friction factor,
(f/ f)(1 + F), which allows the calculation of the axial
pressure gradient based on the bulk mean tempera-
ture nominally used in lumped parameter analyses.
The behavior of the modified friction factor as a
function of Gr,/Re has been found to considerably
differ from that of the standard friction factor par-
ticularly for opposing flows in both the annular and
subchannel geometries.

(3) Nusselt number results have also been presented
as functions of Gr,/Re or Gr, ,/ Re for the annular and
subchannel geometries for the condition of cir-
cumferentially uniform heat flux at the fluid-solid
boundary.

(4) For the rod bundle analysis the celli-averaged
friction factors and the Nusselt number have been
calculated for the interior and edge channel geome-
tries correspondiag exastly to the conventional defi-
nition of subchannels. The results can therefore be
directly used in a subchannel analysis code. The effect
of the duct wall on the edge cells has also been quan-
titatively estimated.

(5) The standard and modified friction factor ratios
and the Nusselt number have been fitted to poly-
nomial equations, i.e. equations (46), (49) and (50),
respectively.
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COEFFICIENT DE FROTTEMENT ET NOMBRE DE NUSSELT DE CONVECTION
MIXTE DANS DES GEOMETRIES VERTICALES ANNULAIRES ET DE SOUS-
CANAUX

Résumé—Des solutions analytiques sont obtenues pour des écoulements verticaux complétement établis
de convection mixte dans des géométries annulaires et des sous-canaux de grappe de barres. Les coefficients
de frottement et les nombres de Nusselt sont présentés en fonction du paramétre Gr,/Re. On définit un
coefficient de frottement modifié pour I'utiliser dans des cas ot on ne connait que les températures moyennes
du fluide comme dans la plupart des expériences unidimensionnelles. On montre que le coefficient de
frottement modifié peut varier sensiblement a partir de la définition standard, ce qui dégage la nécessité
d’utiliser le coefficient de frottement modifié dans les analyses ou on utilise la masse volumique moyenne
pour calculer la composante de gravité dans le gradient axial de pression. Cette ¢tude est comparée aux
données expérimentales disponibles dans la bibliographie.

REIBUNGSBEIWERTE UND NUSSELT-ZAHLEN FUR MISCHKONVEKTION IN
VERTIKAL RINGFORMIGEN GEOMETRIEN UND AUSSCHNITTEN

Zusammenfassung—Fir voll ausgebildete, vertikal laminare Mischkonvektions-Strdmungen in ring-
formigen Geometrien und Teilausschnitten herkémmlicher Stab-Biindel wurden analytische Losungen
erhalten. Reibungsbeiwerte und Nusselt-Zahlen wurden dargestellt und angepaBt als Funktionen des
Parameters Gr,/Re. Ein modifizierter Reibungsbeiwert wird definiert, der in Anwendungen benutzt werden
kann, wo nur iiber die Masse gemittelte Fluid-Temperaturen verfiigbar sind, wie im Fall der Untersuchung
verteilter Parameter und der meisten eindimensionalen Experimente. Es wird gezeigt, daB8 der modifizierte
Reibungsbeiwert stark von der Standard-Definition abweichen kann, was die Notwendigkeit der Benutzung
des modifizierten Reibungsbeiwerts fiir Studien herausstellt, bei denen die Massendichte benutzt wird,
um die Gravitations-Komponente des axialen Druck-Gradienten zu errechnen. AnschlieBend wird die
vorliegende Untersuchung mit experimentellen Daten aus der Literatur verglichen.

KOS®PHULMEHTHI TPEHUA W YHCJIA HYCCEJIbTA IIPU CMENIAHHON KOHBEKLIUU
B BEPTHKAJIBHBIX KOJIBLIEBBIX M 3A30PAX

Annoraims—IIosiydeHsl AHAIHTHYECKHE PELUEHHS Ui MOJHOCTBIO Pa3BUTHIX BEPTHKAJBLHBIX JIAMHHAD-
HBIX T€4eHHH NPH CMEIIAHHOA KOHBEKIHHM B KOJILLEBLIX KaHAJIAX H B 3a30pax nyuka crepxHeil. Koagdn-
npeHTH TpeHus u vucna Hyccensta mpeactasieHs kak QyHkmuu napamerpa Gr,/Re. Ilpemnoxen
MOIH(PHUAPOBAHHBIH K03(HIUHEHT TPEHAS UIA HCIOJNB3OBAHHS B TOM CJIyd9ae, KOrJa M3BECTHA YCpel-
HEHHas 1Mo 06beMY TEMIIEPATYpa KHUKOCTH, Kak HalpuMEp NpH aHallH3e METOAOM KyCOTHBIX HapaMeT-
poB H B OonbIIMHCTBE OOHOMEPHEIX JkcoepEMeHTOB. [IlokasaHo, 4To MoIMPHUHPOBaHHBIH
KOXPHILMEHT TPEHHA MOXET 3HAYHTENBHO OTIHYATHLCA OT €r0 CTAHAAPTHOrO ONpPEeACieHHA, YTO HOJ-
YepKHBAET HEOOXOMWMOCTbL HCIOJIb30BAHMA 3TOTO NapaMeTpa I AHAJMTHIECKOTO HCCIeJOBAHHA B
TOM CJIyyae, KOrJa AJIA pacyeTa rpaBHTANMOHHOM COCTaBIAIOLIEH 0CEBOro IPaiNeHTa JABJICHHS HCIOJIb-
3yercs 0o6beMHas IIOTHOCTh. JIaHO cpaBHEHHME pe3yJbTaTOB aHaJIH3a C MMCIOUIMMHCS B JIHTEpaType
IKCIEPHMEHTANTLHEIMH JaHHBIMH.
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